PUGMM - Parsimonious Ultrametric Gaussian Mixture Models
Finite Gaussian mixture models with parsimonious extended
ultrametric covariance structures estimated via a grouped
coordinate ascent algorithm, which is equivalent to the
Expectation-Maximization algorithm. The thirteen ultrametric
covariance structures implemented allow for the inspection of
different hierarchical relationships among variables. The
estimation of an ultrametric correlation matrix is included as
a function. The methodologies are described in Cavicchia,
Vichi, Zaccaria (2024) <doi:10.1007/s11222-024-10405-9>,
Cavicchia, Vichi, Zaccaria (2022)
<doi:10.1007/s11634-021-00488-x> and Cavicchia, Vichi, Zaccaria
(2020) <doi:10.1007/s11634-020-00400-z>.